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Abstract. The many-body problem of finding a correlation potential in an electron gas is 
solved as a two-electron problem. The resulting correlation potential for a constant density 
compares well with other local-density potentials for a wide range of different densities. The 
formalism is extended for non-constant electron densities and spin-polarisation. For non- 
local exchange we use a simple rescaling of the Kohn-Sham potential, in which non-locality 
up to a certain cut-off radius is included. It is argued that the obtained formalism is applicable 
for relatively high densities in which the exchange-correlation hole is small in comparison 
with the size of a lobe of an atomic wavefunction. Applications for V.  Cu. Nb. Pd, Ni, Fe, 
and Ce usingself-consistent linear-muffin-tin-orbital (LMTO) band calculations give in general 
improved Fermi Surface (FS) properties in all metals. In Li, having low electronic density, 
the FS does not change significantly from the local-density result. The formalism, with its 
advantages and shortcomings compared to other methods and calculated results, is discussed. 

1. Introduction 

The many-body problem of interacting electrons presents great difficulties when exact 
solutions are sought. Large simplification and insight can emerge when self-consistent 
field methods are applied in which the problem is given by a set of single-particle 
equations. According to the Density Functional Theory [l], the exact ground state 
properties can in principle be derived from the single-particle Kohn-Sham equation: 

[-io' + V,(r) + V,(r> + V,(r)]Y&) = E,kY,,k(Y). (1) 
Here V ,  is the Coulomb (Hartree) potential between electrons and nuclei and among 
(uncorrelated) electrons, V,  is the exchange potential and V, is the correlation potential. 
Close to Fermi level, one may expect that the solutions of the band problem are well 
approximated. 

In the local-density approximation (LDA), V,(r) is a constant time ~ " ~ ( r )  where p is 
the electron density, and V,(r) = f ( p ( r ) )  where f is a fit using homogeneous electron- 
gas data [2-61. Better approximations for V,(r) and V,(r) should be functionals of p 
(non-local dependence). 

Some different, approximate non-local-density prescriptions for the exchange-cor- 
relation potential exist [7-91. However, application of non-local corrections has not 
always improved the results calculated in the local limit [9, 101. In view of the existence 
of some known partial failures of local density calculations, it seems worthwhile to search 
for an improved non-local density procedure for use in band calculation of solids. 
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In this work we consider an electron moving together with a subspace around it. The 
subspace in the moving coordinate system makes up a local enviroment in which we 
suppose that the electron is essentially fixed. Another electron is moving around this 
fixed electron and is described by a wavefunction $ ( r ) .  The function @(r)  is solved for 
the interacting (in our case, two-particle) system and the result is then inserted into the 
original band problem, giving the correlation potential. The size of the local enviroment 
is different for correlation than for exchange. But a similar approach can be taken also 
for the exchange. For correlation we solve a two-particle problem as an approximation 
to the many-body interaction, and thus the correlation cell contains two electrons. From 
the non-interacting density p(r)  we define the cell radius r, which for constant density 
would be proportional to the ordinary electron gas parameter rs defined by p = l/$-cr:. 
For metal densities rc and r, are rather small compared to an atom or even compared to 
the size of an oscillation in the atomic wavefunctions Y ( r ) .  For instance, the largest rs 
in vanadium (at the Wigner-Seitz radius R w s )  is about 1.8 au, while R,, is 2.8 au. 
Towards the peak of the 3d function r,  decreases rapidly towards 0.5, while the peak in 
the 3d function is wider than this. The 4f function in cerium is localised, but at the 4f 
peak at s 1  au r,  is smaller, about 0.7. Near Rws of 3.8 au r,  is quite large (2.5 au). In a 
dilute alkali metal like Li, r,(Rws) is larger than R,, itself and the wavefunction has 
several nodes within the exchange and correlation cells. Thus, in transition metals, and 
perhaps in Ce too, one may consider the non-interacting charge density (and Y(r)) as 
slowly varying around a given position rand  it will be possible to justify our procedure 
of finding the correlation as a local two-body problem around r ,  within the dimension 
rc .  In low-electron-density materials, as alkali metals, and in cases with rapidly varying 
wavefunction (compared to r , )  as in some f-electron systems or deep core levels near 
r = 0, our procedure will be less justified. Nevertheless, we will apply our theory also to 
Li and Ce as test cases, keeping in mind that the potential is intended for valence 
electrons. A special test case is the electron gas with constant density. As will be shown 
later, our theory gives correlation potentials very similar to those obtained earlier by 
elaborate many-body theories. Thus, when non-locality is neglected we recover the 
established local-density results. 

2. Theory 

2.1. Local potential 

2.1.1. Exchange. In the limit of locality we have an electron gas with constant density 
(spins + and -) p = p+ + p- around a given position r .  According to Slater [ll] an 
effective potential can be obtained from the exchange density 

p'(r)C(r) = -9p'[siny - y c ~ s y ] ~ / y ~  
withy = kFr 

V' x s  = e2 1 p - r d  +C(r)  r -  - -2 .954(2~ ' ) ' /~  (Ryd). 

In the Kohn-Sham density functional approach (l), one finds a different exchange 
potential 

V&, = Vxs  + $e2 [ p =  (,%I d 3 r =  -1.969(2p')'i3 (Ryd). (3) 

However, the two approaches are not too different and it is possible to introduce an 
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effective exchange density p'C(r) in order to obtain the Kohn-Sham (KS) potential 
using a formula similar to equation (2). 

A simple step function C(r)  = -1 for r < r: and C(r )  = 0 elsewhere gives 
V,i = 3/r,' (Ryd) with the normalisation condition pi4n(rF)3 = 1. We can reduce the 
radius rs' in order to obtain the Kohn-Sham value for the exchange potential (decreased 
normalisation) or keep the radius (and normalisation) and multiply the step function 
C(r)  by a scaling factor (0.513). Both rescalings are made to maintain the KS potential 
for constant densities, but the latter procedure leads to stronger non-local effects when 
the method is extended to non-constant densities. 

2.1.2. Correlation. When the correlation arising from Coulomb repulsion is neglected, 
the exchange already keep electrons of parallel spin apart. This is not true when the 
spins are antiparallel. Therefore, the most important contribution for the Coulomb 
correlation is the interaction of electrons of opposite spins. 

A simple way to take this fact into account is to introduce an effective density 
available for the Coulomb correlation pf = ,upT + pF (0 < p < 1). With p,' we define 
a correlation cell of radius r,' so that its volume contains two electrons. Here we find p 
by requiring that removed density (1 - p)p' gives the Kohn-Sham exchange potential 
V x K S  = -Jr: (1 - p)p= / rd3 r r .  

We let one electron localise at r = 0 and interact with the second electron. Full 
Coulomb interaction is assumed for r <  r,' and complete screening outside. The 
wavefunction @ ( r )  describes the second electron (in an s state) scattered by the localised 
one and it is found from solving the Schrodinger equation 

-4V'@(E, r )  + ( l / r ) @ ( E , r )  = E@(E,r) .  (4) 
The whole space is thought of as being filled by cells or spheres containing pairs of 
electrons of this type. As the densities vary from region to region the sizes of the spheres 
vary and between the spheres we search for solutions of @ ( r )  which match smoothly 
from sphere to sphere. The situation is similar to the atomic-sphere-approximation 
(ASA) band calculation if electron 1 corresponds to the nucleus and electron 2 is the-only 
valence electron, and if only the pair potential is acting. The boundary condition at 
r = r,' is that the logarithmic derivative r z @ ' / @  = D where D = r c f ' / f  with 
f = is the logarithmic derivative for the non-interacting density. The energy E 
is varied until this condition is fulfilled for a nodeless solution @ ( E ,  r ) .  For constant 
densities D ( E )  = 0. The correlation potential for electron 1 at r = 0 is 

In a non-polarised case @+ = @-, V: = V ;  , while in a magnetic case both exchange and 
correlation depend on the spin index. 

As a test we perform calculations for different non-polarised densities and para- 
metrise the results in terms of the usual r,-parameter. A very good fit to our results is 
obtained by a Wigner-type formula 

V ,  = -(a/3)(3b + 4 r , ) / ( b  + r , ) 2  (Ryd) (6) 
with the correlation energy 

E ,  = -a / ( ra  + b )  (Ryd) (7)  
where a = 0.37294 and b = 1.89173. The results are shown in figure 1, together with two 



8868 B Barbiellini and T Jarlborg 

0 6 1  I I I 1 i 
0 2 4 

rs 
Figure 1. Effective scaling factor CY as a function of the parameter r,: Wigner (broken curve) 
[2]. Hedin-Lundqvist (dotted curve) [3]. present model (full curve). 
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Figure 2. Normalised values of the interacting charge density 101 around the point charge. 
for different I,: r, = 0.3 (full curve); r, = 0.6 (broken curve); r, = 1.2 (dotted curve); r ,  = 7 
(chain curve). 

other commonly used correlation potentials [2, 31. As seen our results compare very 
well with the Hedin-Lundqvist local-density potential [ 3 ] ,  based on a Fermi liquid 
calculation [ 121 for typical metallic electron densities. In figure 2 we show the interacting 
charge density $ 2  around the point charge. For very low densities our results tend 
towards a Wigner condensation, since at very large r,, $ ( r )  easily piles up near the 
sphere boundary. At very large densities VF tends to zero since r, is small and $ ( r )  is 
essentially constant. This is so because of the boundary condition imposed on $(r )  near 
r,. A rapid variation of $ ( r )  for smaller r costs more kinetic energy than can be gained 
from the Coulomb repulsion. It might be noted that our method avoids the problem of 
negative q2 (or negative pair-correlation) for small r .  Test calculations of the band 
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structure on several transition metals show that the results are indeed very similar to 
results obtained by conventional local-density potentials. 

A similar approach has been used for calculating electron-positron correlation and 
the effects on annihilation with the main difference that l / r  becomes - 1/r in equation 
(4) [ 131. Experiments of angular correlation of positron annihilation in transition metals 
can be better understood from these calculations including the electron-positron cor- 
relation. 

In the spin-polarised case we obtain a somewhat stronger polarisation than the 
parametrised results of Gunnarsson and Lundqvist [6]. The screening of the exchange 
is of importance in order to reproduce the polarisation of [6]. Here, we did not try to 
parametrise our results into a simple formula for every (constant) density and spin 
density, since our goal is to extend the formalism towards non-locality. 

In summary, we find that although our theory for handling the correlation problem 
is very transparent and simple, it leads to results which are very similar to the results of 
complex many-body theory. This agreement with standard methods is important when 
we extend our approach to include non-local effects, since it implies that our results 
behave correctly in the limit of slowly varying densities. 

2.2. Non-local potential 

2.2.1. Exchange. In a local coordinate system r centred at r’ in a solid we describe the 
densities and potentials p( r )  and V ( r ) .  In a muffin-tin (MT) geometry r’ might be one of 
the mesh points for which the MT potential is given. For spherically symmetric MT 
potentials we probe the local variations of p( r ) ,  etc., by considering three directions r, 
within the atom, one towards the nucleus, one away from the nucleus and one in the 
perpendicular direction. The radii rs:, are defined independently in each direction to 
give the same normalization condition in each direction. A simple non-local extension 
of equation ( 2 )  in the spirit of the weighted density approximation (7, 9) is: 

where w, is the angular weight (0.25, 0.25 and 0.50) and C(r,) is the step function dis- 
cussed earlier which gives the KS potential in the local limit. Using this step function to 
replace a more realistic function makes the numerical calculation very simple, but tends 
to exaggerate the non-local effects. The original C(r)  is - 1 for r = 0 but increases rapidly 
with r .  Therefore, it weights mainly local ( r  = 0) density. The step function is - 1 all the 
way up to the cut-off radius and weights to a large extent the neighbouring (non-local) 
density. Moderate density variations for larger radii are not very important since the 
Coulomb interaction 1/r is largest for small r .  In order to correct for a presumably too 
strongly non-local exchange we use an exchange potential which is the average of the 
local (equation (2)) and the fully non-local (equation (8)). 

2.2.2. Correlation. There are essential differences between the charge density of an 
electron gas and the density of an atom. Apart from spatial variations, the atomic charge 
is structured in energy shells, so out of the total density some electrons (core) have large 
kinetic energies while others (valence) have not. In the electron gas the kinetic energies 
vary continuously. In the correlation problem we will only consider properly the cor- 
relation among valence electrons. The reason is that core electrons have large kinetic 
energy and their solutions @ ( r )  may be of higher quantum numbers having nodes. The 
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correlation between a valence state and a ‘many-node’ state is small since the kinetic 
energy is dominating the potential energy. At present, we simplify this problem by 
setting the correlation between valence and core electrons to zero. This avoids having 
shell-dependent potentials, but our correlation is not appropriate for the core states. 

As in the case of exchange we consider three directions: inward, outward, and 
perpendicular. We assume that the solution @,(r)  for each direction can be found by an 
ordinary ‘spherical’ Schrodinger equation and that it can be found independently of the 
other directions. This implies that no charge transfer from one direction to another is 
possible. Each solution @,(r)  is approximately given from 

- t v 2 4 w ,  r ,> + [1 / r ,  + V ( r , )  - V(O) I@, (E ,  r , )  = E,@, (E ,  r , ) .  (9) 
Here V ( r )  is the external  potential. In analogy with the local correlation potential we 
obtain 

3 
r,+l @ : ( E i ,  r )  - f 2 ( r , )  

r’ dr , .  
i =  1 T i  

The energies E, are found by imposing continuous logarithmic derivatives at the different 
r,‘,,; I)(@,) = D ( f )  where f 2 ( r i )  is the effective non-interacting valence spin density. 
Equations (9) and (10) are easily solved numerically for r’ being larger than about & of 
Rws.  At smaller r’ there is a rapid variation of V ( r , )  within r,‘,, and difficulties of finding 
nodeless solutions arise. Typically V,(r ’ )  is near to the local value for r r  = Rws but then 
increases and is considerably larger than VIP“’ for r‘ corresponding to localised and 
spatially varying electron densities. At even smaller r’, Vc(r ’ )  goes to zero, as the valence 
density gets small near the nucleus. Our procedure is applied for rr  larger than the radius 
which gives V,‘ = 0 whereas we assume no correlation for smaller radii. This critical 
radius varies from 15-30% of the Wigner-Seitz (ws) radius depending on the material. 

When p : ( r , )  is needed outside the Rws radius we take a simple average of the 
corresponding densities within the neighbouring atoms. Far outside R,, p,‘ tends to the 
value of the number of effective spins divided with the ws volume. 

In the evaluation of the non-local exchange we use the total density (averaged in the 
same way as p,‘ for r, outside Rws)  and the same cut-off radius (for small r’)  as used in 
the correlation problem. For r‘ smaller than the cut-off radius we interpolate between 
local and non-local exchange according to the radius. 

3. Results and discussion 

We compare our results with three commonly used local-density potentials. One is the 
Kohn-Sham (KS) potential V,,, = -1.539/r,’ (Ryd) i.e. only exchange [l]. The others 
are the Hedin-Lundqvist (HL) potential [3]  and the Gunnarsson-Lundqvist (GL) poten- 
tial (for the spin-polarised case) [6]  in which correlation is added. 

3.1. Non-magnetic metals 

In table 1 we show the partial charges within the ws spheres as obtained from our 
LMTO calculations using Kohn-Sham, Hedin-Lundqvist and our non-local exchange 
correlation potential. The trends for V and Cu are opposite; in V the sp band is attracted 
more by the non-locality whereas in Cu the sp bandis repelled. Especially the correlation 
increases in the outer part of the ws sphere in V. In Cu the non-interacting valence 
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Table 1.  Number ofvalence electronsofdifferentcharacters. KSmeanS Kohn-sham potential 
[I];  Hedin-Lundqvist (31: GL, Gunnarsson-Lundqvist 161; NLD, present non-local-density 
potential. 

Copper Vanadium 

Shell KS HL NLD KS HL YLD 

S 0.712 0.71 1 0.708 0.632 0.631 0.646 
p 0.752 0.737 0.709 0.753 0.726 0.792 
d 9.471 9.489 9.521 3.541 3.571 3.485 
f 0.064 0.063 0.061 0.074 0.071 0.076 

Niobium Palladium 

Shell KS HL NLD KS HL NLD 

S 0.640 0.640 0.657 0.620 0.616 0.606 
p 0.707 0.680 0.728 0.666 0.649 0.613 
d 3.523 3.556 3.482 8.583 8.607 8.649 
f 0.130 0.124 0.132 0.130 0.128 0.132 

Lithium Cerium 

Shell KS HL NLD KS HL NLD 

S 0.507 0.509 0.508 0.607 0.608 0.631 
p 0.459 0.457 0.457 0.316 0.296 0.340 
d 0.031 0.031 0.032 1.996 1.962 2.080 
f 0.028 0.027 0.028 1.081 1.135 0.948 

Iron Nickel 

Shell G L ( + )  GL( - - )  N L D ( + )  N L D ( - - )  G L ( + )  C L ( - )  N L D ( + )  NLD(- )  

5 0.320 0.327 0.319 0.325 0.330 0.333 0.326 0.329 
p 0.362 0.405 0.372 0.413 0.353 0.376 0.337 0.359 
d 4.404 2.102 4.330 2.161 4.590 3.940 4.584 3.986 
f 0.046 0.033 0.046 0.032 0.038 0.040 0.039 0.039 

density has a relatively deep minimum between the atoms and the Coulomb repulsion 
is not very effective in making the correlation hole even deeper in this region. On the 
other hand, closer to the peak in the Cu d wavefunction the non-local potential tends to 
be more attractive. Therefore, Cu has in non-local description a more attractive potential 
for the localised d electrons, while V has a more attractive potential near the ws boundary 
where delocalised p electrons are. From looking at logarithmic derivatives one finds a 
relative sp- versus d-band shift of about 30 mRyd in V, while in Cu the shift is about 
-25 mRyd. 

These shifts have some consequences for the Fermi surface (FS) properties. In V [29, 
301 band 3 has pure p character at the N-point and non-locality reduces the size of the 
corresponding N-centred ellipsoid. In Cu the FS becomes more spherical with smaller 
'necks', mainly because of less d character near EF [32]. As seen in table 2 these trends 
improve the comparison with experiments in both materials. It is important to note that 
this result depends sensitively on non-locality of both correlation and exchange. Often 
one finds an increase in correlation due to non-locality at the same point in space where 
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Table 2. Fermi surface dimensions in units of 2 n / a  (for the abbreviations see table 1). E(1) 
and E ( 2 )  are the N-centred ellipsoid areas. 

Dimensions for Cu Dimensions for V 

(100) (110) Neck N-H N-P N-T E(1) E(2)  

KS 0.845 0.735 0.162 0.166 0.245 0.234 0.132 0.155 
HL 0.844 0.737 0.156 0.173 0.256 0.254 0.143 0.171 
NLD 0.835 0.743 0.143 0.161 0.232 0.219 0.115 0.140 
Experiment 0.827d 0.743h 0 .  147d 0.17jh 0.224h 0.212' 0.124h 0.14gh 

Areas for Pd Dimensions for Nb 
- 

Xpocket  Open holes Electronsheet N-H N-P N-I' €(I) E(2) 

KS 0.023 0.046 1.022 0.175 0.309 0.263 0.180 0.215 
HL 0.025 0.049 1.019 0.183 0.318 0.278 0.193 0.226 
NLD 0.027 0.052 0.979 0.179 0.311 0.263 0.184 0.215 
Experiment 0.021d 0.032d 0.996* 0.198' 0.317' 0.295' 0.212' 0.237' 

Reference [14]. 
References [ 15. 161. 
Reference [17] 

* Reference [ 181 

Table 3. Eigenvalues in copper in mRyd compared with photoemission results. 

Selected eigenvalues in Cu 

HL NLD Experiment [20] 

r , ?-r2' 59 60 59 
x,-x, 257 253 232 
L,-L, 254 250 
EF-rlZ 168 184 210 

113 129 151 
r?5 -r I 465 435 363 

- 

non-locality gives reduced exchange. Thus, there is a delicate balance between opposite 
effects. The fact that earlier attempts to include non-locality in exchange only improved 
the FS in Cu but exaggerated the change in V [9] while gradient corrections improved V 
but deteriorated Cu [lo], seems to fit with our observation. 

Photoemission in Cu gives a considerably lower position of the d band than obtained 
from LD calculation [20]. The interpretation of photoemission data is obscured by 
relaxation and other non-ground-state effects, but it has been argued that self-interaction 
corrections lower the position of the d band and improve the agreement with the 
experiment [21]. Our non-local potential gives a lowering of the d band in Cu although 
not completely as in the experiment, cf table 3. The full localised d band in Cu is sensitive 
and shifts more than, say, the d levels in V. The non-local effects on the 4d metals appear 
weaker than for the 3d metals, at least the changes in partial charges indicate this (cf 
table 1). The charge in the d band in Pd seems as large as in Cu, but these changes appear 
easier in Pd which has d electrons at the Fermi energy [19]. The FS area in V changes 
more than the corresponding one in Nb, as seen in table 2. Surprisingly, our LD calculation 
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on Nb gives a quite good size of the N-ellipsoid, contrary to APW calculations [22] which 
give dimensions that are too large. In a test calculation we put the potential to a constant 
for r > RMT in order to model an APW potential. In this case we indeed find that the 
number of p electrons decreases compared with the normal LMTO potential. Therefore, 
our LMTO calculation using a continuous potential up to the ws radius is the reason for 
the difference compared with APW, which uses a MT potential plus an interstitial region. 
Non-sphericity introduced in LMTO by ‘empty spheres’ does not produce any significant 
change in the FS. The effects of non-locality are too strong on the LMTO results, so the N 
pocket becomes somewhat too small compared with experiment. On the other hand, 
our non-local corrections will probably be effective in improving the FS of the ‘full- 
potential’ Apw-calculation of Elyashar and Koelling [22] .  

In y-Ce the effect of non-locality is to raise the energy of the f band about 27 mRyd 
relative to the s, p and d bands. Here exchange and correlation give the same trend so 
that non-locality increases the attractive potential to the outer part while there is a 
decrease close to the localised part of the 4f function. The effects on the FS are important, 
since several bands are flat near EF.  Parametrised LMTO-LD calculations fitted to positron 
annihilation experiments concluded that the FS is well described by an upward shift of 
the f bands of 30-40 mRyd [23]. Thus, our non-local potential is able to produce a similar 
change in the FS. 

In Li the size of the correlation cell (containing 2 valence electrons) is considerably 
larger than thews cell itself (containing 1 valence electron). The non-interacting valence 
density and the external potential have complicated variations within the correlation 
hole and are not simply described by our three directions. Our method gives a change 
in exchange correlation potential but the effect on the FS is very small. Thus, the problem 
of a too anisotropic FS resulting from LD calculations remains. Here quasi-particle 
perturbations of LD bands have given anisotropies similar to those found from positron 
annihilation [25,26]. 

3.2. Magnetic systems, Fe and N i  

The magnetic moments decrease in both metals when the non-local potential is used. 
As seen in table 4, the exchange splitting is reduced as well following the reduction of 
magnetic moments. Photoemission data give even smaller exchange splittings for Ni. 
These trends for the non-local potential improve the comparison with experiments. Our 
local approach gives, however, a stronger tendency towards magnetism than other LSD 
potentials. Therefore, we conclude that the tendency of weakened magnetism is coming 
from the non-local terms. More precisely, we find in the transition metals that the non- 
local exchange part (which gives the spin dependence) of the potential is smaller than 
the local one in the region of space where the d-electron density is becoming localised. 

Table 4. Magneton number and exchange splitting for Ni and Fe. GL means Gunnarsson- 
Lundqvist potential [6]; NLD, present non-local-density potential. 

Magneton number Exchange splitting (eV) 

Ni Fe Ni Fe 

- - KS 0.65 2.54 
GL 0.62 2.26 0.69 2.35 
NLD 0.57 2.14 0.64 2.0 
Experiment [27] 0.56 2.12 0.3-0.5 1.2-2.0 
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Table 5.  Energy shifts in mRyd of the different bands due to the present non-local-density 
potential relative to the local potentials [3 ,6]  deduced from the logarithmic derivative. 

Fe Ni  

L V c u  Ce ( + I  (-1 (+I (-1 

0 -26 10 -21 -18 -1s 20 19 
1 -26 10 -25 -23 -18 23 21 
2 5 -1s -21 2 -12 1 -4 
3 - - - _ _  - 5 

In iron we calculate (spherical) magnetic form factors and the trend is to make the 
form factor more localised, i.e. more itinerant magnetism in real space, because of the 
non-locality. Non-spherical magnetic form factors in Fe, calculated by Callaway and 
Wang [24] using LSD potential seem to give values that are too delocalised compared with 
experiment. Therefore, the relative change due to non-locality improves the agreement 
with experiment, giving a more itinerant spin density. However. our absolute values of 
the magnetic form factors are in general smaller than the experimental numbers, a fact 
which probably is due to the use of spherical densities in our calculation. (The same 
comparison for total form factors in vanadium (also BCC) also gives values that decrease 
too rapidly, with the relative change towards more itinerant charge density for the non- 
local potential.) In FCC Ni [28] the magnetic form factor results also indicate that the 
non-local potential gives a more itinerant spin density, but the absolute values of the 
form factors are in general smaller than experiment in our LSD results. The conclusions 
from the form factor calculations are less clear for Ni than for Fe. 

In iron as well as in vanadium there is a notable increase of p electrons when the non- 
local potential is introduced (cf. table 1). This gives smaller dimensions of the N-centred 
hole pockets in agreement with experimental findings. Recent positron annihilation 
measurements indicate that the N pockets may be of very small size [31]. The band shifts 
due to non-locality are shown in table 5 .  In Fe two effects occur: first a decreased 
exchange splitting (d electrons mainly), secondly an increase of p electrons (as in 
vanadium) for both spins. Experimentally it seems that both effects are present. 

4. Conclusion 

We present a simple method for calculation of pair-correlation densities and correlation 
potentials. The method is extended to treat non-locality, i.e. when the charge and spin 
densities are no longer constant. The method is convenient for numerical computations 
and should be applicable for rather dense electron densities. Applications to various 
metals indicate that non-locality, due to correlation only, is not sufficient to obtain a 
general improvement of the FS properties. Together with a simple non-local density 
model for exchange we obtain a general improvement of the FS properties and magnetic 
moments compared to the use of local-density potentials. It is found that for the transition 
metals usually the effects of non-locality in correlation and exchange are opposite. This 
rather delicate balance between the two effects underlines the difficulty of obtaining 
good results. Reduced magnetic moments in Fe and Ni seem to originate from reduced 
exchange in our non-local description. 

Clearly, our simple approach for non-local exchange potential could be refined. It 
should be possible to combine an approach similar to that of reference [9] with our 
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correlation for exchange only. In the present approach we allow for non-spherical 
exchange-holes and correlation holes around a given point. A further refinement of the 
mutual screening effects, i.e. the reduction of correlation due to exchange and vice- 
versa should be carried out. To some extent the difficulties are to separate the effects 
into what is pure correlation and pure exchange. The screening effect of the two-particle 
potential by other electrons is probably not negligible [33]. 

In the present work we do not give the results of total energies or pressures from the 
non-local potentials. It is known that local potentials in general give equilibrium lattice 
constants that are too small. Applications of local potentials fail to predict anti-ferro- 
magnetic insulating ground states in some oxides. Therefore, there are numerous testing 
grounds for further studies of non-local potentials. In our present work some tests are 
presented which show some advantages in proceeding towards non-local potentials, but 
this is certainly not the last word on the subject. 
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